Direct detection of superoxide anion generated in C_{60} -photosensitized oxidation of NADH and an analogue by molecular oxygen

mi,*^b Toshifumi Konishi,^c

Ikuo Nakanishi,*" Kei Ohkubo,^b Shunsuke Fujita,^b Shunichi Fukuzumi,*^b Toshifumi Konishi,^c Mamoru Fujitsuka,^c Osamu Ito*^c and Naoki Miyata*^d

- ^a Redox Regulation Research Group, Research Center for Radiation Safety, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan. E-mail: nakanis@nirs.go.jp; Fax: +81-43-255-6819; Tel: +81-43-206-3131
- ^b Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation, Suita, Osaka 565-0871, Japan. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp; Fax: +81-6-6879-7370; Tel: +81-6879-7368
- ^c Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST, Japan Science and Technology Corporation, Sendai, Miyagi 980-8577, Japan. E-mail: ito@tagen.tohoku.ac.jp; Fax: +81-22-217-5608; Tel: +81-22-217-5608
- ^d Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8603, Japan. E-mail: miyata-n@phar.nagoya-cu.ac.jp; Fax: +81-52-836-3407; Tel: +81-52-836-3407

Received (in Cambridge, UK) 15th July 2002, Accepted 6th August 2002 First published as an Advance Article on the web 26th September 2002

Visible-light irradiation of poly(vinylpyrrolidone) (PVP)-solubilized C_{60} in water in the presence of NADH (dihydronicotinamide adenine dinucleotide) and molecular oxygen (O₂) results in formation of superoxide anion (O₂'⁻). Formation of O₂'⁻ having a characteristic $g_{||}$ value of 2.18 was evidenced by the direct observation with use of a low-temperature EPR technique at 77 K. Photoinduced O₂'⁻ formation was also observed for an *N*-methyl-2-pyrrolidone (NMP) solution of C_{60} and 1-benzyl-1,4-dihydronicotinamide (BNAH) in the presence of O₂, whereas C_{60} radical anion (C_{60} '⁻) was formed in the absence of O₂ under otherwise the same experimental conditions. These results suggest that $C_{60}^{2^-}$ formed in the photoinduced electron-transfer reduction of C_{60} by BNAH acts as an electron donor to O₂ to give O₂'⁻ in NMP.

Introduction

Fullerenes are known to act as very strong photosensitizing agents and to exhibit bioactivity against biomolecules under photoirradiation, which could lead to their wider application as pharmaceuticals.¹⁻¹¹ Yamakoshi *et al.* have previously reported photoinduced DNA cleavage in the presence of NADH (dihydronicotinamide adenine dinucleotide) in water,^{4a} when C₆₀ or C₇₀ used as a sensitizer was dissolved with use of poly-(vinylpyrrolidone) (PVP).¹² The singlet excited state of C_{60} (¹C₆₀*) produced initially upon irradiation is efficiently converted to the triplet excited state ${}^{3}C_{60}^{*}$ by the fast intersystem crossing.¹³ ${}^{3}C_{60}^{*}$ thus formed is known to undergo energy transfer to molecular oxygen (O2) to give singlet oxygen $({}^{1}O_{2})^{14-19}$ or electron transfer from reductants to produce the radical anion C_{60}^{-20-31} ${}^{1}O_{2}$ has been reported to oxidize NADH via an electron transfer from NADH to ¹O₂ to yield the two-electron oxidized form, *i.e.*, NAD⁺.^{32,33} Photoinduced electron transfer from the singlet excited state of NADH and analogues to O_2 can also initiate the reduction of O_2 in the protic media to hydrogen peroxide.34,35 In any case, no direct observation of superoxide anion (O_2^{\bullet}) produced in the electron-transfer reactions involving NADH has so far been reported. As such, the active oxygen species such as O_2^{*-} and OH involved in the DNA cleavage in the aqueous C₆₀-PVP-NADH-O2 system under irradiation have yet to be identified clearly.

We report herein the direct detection of $O_2^{\bullet-}$ generated in the aqueous C_{60} -PVP-NADH- O_2 system under irradiation with

use of low-temperature EPR spectroscopy. Photoinduced O_2^{-} formation was also observed for the *N*-methyl-2-pyrrolidone (NMP) solution of C_{60} and 1-benzyl-1,4-dihydronicotinamide (BNAH) in the presence of O_2 , whereas C_{60}^{--} was formed in the absence of O_2 under otherwise the same experimental conditions. The mechanism of O_2^{--} formation in NMP is discussed based on the spectroscopic and electrochemical data obtained in this study, providing a valuable insight into the photoinduced DNA cleavage in the aqueous C_{60} -PVP-NADH- O_2 system.

Experimental

Materials

 C_{60} (>99.99% pure) was purchased from MER Co., Tucson, AZ, USA. Poly(vinylpyrrolidone) K30 (PVP K-30, MW 40 000) was obtained commercially from Wako Pure Chemical Ind. Ltd., Japan. 5-Diethoxyphosphoryl-5-methyl-1-pyrroline *N*oxide (DEPMPO) was obtained commercially from Oxis International Inc. Dihydronicotinamide adenine dinucleotide (NADH) and 1-benzyl-1,4-dihydronicotinamide (BNAH) were purchased from Sigma Chemical Co. and Tokyo Chemical Industry Co., Ltd., Japan, respectively. Tetra-*n*-butylammonium perchlorate (TBAP) used as a supporting electrolyte was recrystallized from ethanol and dried under vacuum at 313 K. *N*-methyl-2-pyrrolidone (NMP) was purchased from Wako Pure Chemical Ind. Ltd., Japan, and used as received. Benzonitrile (PhCN) was distilled over P₂O₅ prior to use.³⁶

J. Chem. Soc., Perkin Trans. 2, 2002, 1829–1833 1829

Preparation of PVP-solubilized C₆₀ in water

PVP-solubilized C_{60} in water was prepared by the literature procedure.¹² C_{60} (0.4 mg) dissolved in toluene (1.0 mL) was added to 2.0 mL of CHCl₃ containing 100 mg of PVP (K-30). The solution was well mixed and the solvent was thoroughly evaporated under vacuum. The residue was redissolved in 2.0 mL of water and the aqueous solution thus obtained was sonicated to produce a clear brown solution.

EPR measurements

A quartz EPR tube (4.5 mm id) containing an oxygen-saturated aqueous solution (50 mM phosphate buffer, pH 7.4) containing C_{60} (1.5 × 10⁻⁴ M), NADH (1.5 × 10⁻⁴ M), PVP (0.4%) was irradiated with the focused light of a 1000 W high-pressure Hg lamp (USH–1005D) through an aqueous filter for 60 s, and then O₂ bubbling for 60 s at 298 K. The EPR spectrum of O₂⁻⁻ in frozen aqueous solution at 77 K was measured with a JEOL X-band spectrometer (JES-RE1XE) apparatus under non-saturating microwave power conditions. The g values were calibrated precisely with a Mn²⁺ marker which was used as a reference.

For the detection of DEPMPO–OOH, an NMP solution containing C_{60} (1.4 × 10⁻⁴ M), BNAH (1.4 × 10⁻³ M), and DEPMPO (1.4 × 10⁻² M) in a LABOTEC LLC-04B EPR sample tube was irradiated in the presence of O₂ with a 300 W reflector lamp for 30 s.

Cyclic voltammetry

Cyclic voltammetry measurements were performed at 298 K on a BAS 100W electrochemical analyzer in deaerated NMP containing TBAP as a supporting electrolyte. A conventional three-electrode cell with a platinum working electrode (surface area of 0.3 mm²) and a platinum wire as the counter electrode were utilized. The Pt working electrode (BAS) was polished with a BAS polishing alumina suspension and rinsed with acetone before use. The measured potentials were recorded with respect to the Ag/AgNO₃ (0.01 M) reference electrode. All potentials (*vs.* Ag/Ag⁺) were converted to values *vs.* SCE by adding 0.29 V.³⁷ The electrochemical measurements of C₆₀ in NMP were carried out under an atmospheric pressure of argon, while the reduction potential of O₂ was measured in O₂-saturated NMP.

Laser flash photolysis

The procedure and the equipment for the measurements of the triplet–triplet absorption spectrum of ${}^{3}C_{60}^{*}$ were described previously.³¹

Spectroscopic measurements

Typically, to a deaerated NMP solution (3 mL) of C_{60} (1.4×10^{-4} M) in a quartz cuvette (10 mm id) was added BNAH (1.4×10^{-4} M) under an atmospheric pressure of argon, and the solution was irradiated at 532 nm with a Shimadzu RF-5300PC spectrofluorophotometer at 298 K. The Vis–NIR spectra were measured on a Shimadzu UV-1600PC UV–visible spectrophotometer which was thermostated at 298 K.

Near-IR luminescence emission spectra were measured on a Hamamatsu Photonics R5509-72 photomultiplier under irradiation at 560 nm with use of a Cosmo System LVU-200S monochromator.

Results and discussion

Photosensitized formation of singlet oxygen in an aqueous PVP system

Poly(vinylpyrrolidone) (PVP), a detergent, was used to dissolve C_{60} into water.¹² A PVP-solubilized aqueous solution of C_{60} is

brown, although C_{60} in non-polar media, such as toluene, benzene and *n*-hexane, is purple. This may be due to a strong interaction between C_{60} and PVP in water.^{12,38} C_{60} is known to act as a strong photosensitizer, which produces singlet oxygen (¹O₂) by photoirradiation in the presence of molecular oxygen (O₂) *via* energy transfer from the triplet state ${}^{3}C_{60}^{*}$ to O₂.¹⁴⁻¹⁹ Photoinduced ${}^{1}O_{2}$ formation in the aqueous C_{60} -PVP-O₂ system was examined with use of near-IR luminescence emission spectroscopy.³⁹ The characteristic luminescence emission band of ${}^{1}O_{2}$ at 1270 nm was observed for a C₆D₆ solution of C₆₀ as shown in Fig. 1a. On the other hand, no

Fig. 1 Near-IR luminescence emission spectra for (a) C_6D_6 solution of C_{60} (2.0 × 10⁻³ M) (dashed line) and (b) the 0.4% PVP-solubilized phosphate buffer solution (50 mM; pH 7.4) of C_{60} (1.5 × 10⁻⁴ M) (solid line) in the presence of O_2 at 298 K.

luminescence emission band of ${}^{1}O_{2}$ was observed for the aqueous solution of C_{60} -PVP (Fig. 1b). The absence of the luminescence emission band of ${}^{1}O_{2}$ in the aqueous C_{60} -PVP- O_{2} system suggests that the energy transfer from ${}^{3}C_{60}^{*}$ to O_{2} is prohibited due to a strong interaction between C_{60} and PVP in water. The strong coordination of PVP to C_{60} has recently been indicated by the large formation constant ($K = 1331 \text{ M}^{-1}$) for a strong charge transfer complex formed between PVP and C_{60}^{-38} Alternatively ${}^{1}O_{2}$ formed under the present experimental conditions is too short-lived to be detected. Thus, even if ${}^{1}O_{2}$ is formed in the aqueous C_{60} -PVP- O_{2} system, it cannot be involved in the oxidation of NADH.

Photoinduced O_2 ⁻⁻ generation in an aqueous C_{60} -PVP-NADH- O_2 system

Visible-light irradiation of the aqueous C_{60} -PVP- O_2 system in the presence of a reductant, such as NADH, results in formation of superoxide anion (O_2^{-}).^{4a} Yamakoshi *et al.* have reported that the characteristic EPR signals of the O_2^{-} -adduct of 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO), DMPO-OOH, are observed under visible-light irradiation of the aqueous solution containing C_{60} -PVP, NADH, and DMPO in the presence of O_2 .^{4a} Formation of O_2^{-} was confirmed directly by a low-temperature EPR method. The EPR spectrum of O_2^{-} generated by visible-light irradiation of the aqueous C_{60} -PVP– NADH– O_2 system is shown in Fig. 2, where the characteristic EPR signal due to O_2^{--} which has the $g_{||}$ value of 2.18 is clearly observed at 77 K.⁴⁰

Electrochemical behavior of C₆₀ in NMP

N-Methyl-2-pyrrolidone (NMP), a monomeric component of PVP, was employed as a non-aqueous polar solvent to investigate the photoinduced $O_2^{\bullet-}$ formation in the presence of C_{60} and reductants. The solubility of C_{60} in NMP is significantly high (0.89 mg mL⁻¹).⁴¹ First, the electrochemical behavior of

Table 1Reduction potentials (vs. SCE) of C_{60} in non-aqueous polarmedia

Solvent	$E^{0}_{\rm red}{}^{a}/V$ ($\Delta E^{b}/mV$)			
	1st	2nd	3rd	Fc ⁺ /Fc
NMP	-0.35 (104)	-0.86 (119)	_	0.40 (116)
PhCN	-0.43 (72)	-0.87 (72)	-1.34 (76)	0.50 (69)
^{<i>a</i>} Determi TBAP; W	ned by cyclic v orking electrode:	oltammetry. Sup Pt; Scan rate: 0.	porting electron 1 V s^{-1} . $^{b} \Delta E = $	blyte: 0.1 M $E_{pc} - E_{pa}$.

Fig. 2 X-Band EPR spectrum of O_2^{--} generated by visible-light irradiation of a phosphate buffer solution (50 mM; pH 7.4) of C_{60} (1.5 × 10⁻⁴ M), NADH (1.5 × 10⁻⁴ M), PVP (0.4%) and O_2 at 77 K.

 C_{60} in NMP was examined using cyclic voltammetry (CV). Two reversible redox couples were observed for an NMP solution of C_{60} containing 0.1 M TBAP as shown in Fig. 3, although the

Fig. 3 Cyclic voltammograms of C_{60} in NMP (solid line) and in PhCN (dashed line) containing 0.1 M TBAP at 298 K. Working electrode: Pt; scan rate 0.1 V s⁻¹.

third reduction process could not be observed because of the reduction of NMP itself. The reduction potentials thus obtained are listed in Table 1 together with those in benzonitrile (PhCN).⁴² Table 1 also shows the redox potentials of ferrocene (Fc) as an internal standard. The first reduction potential of C_{60} to produce C_{60}^{--} in NMP is shifted slightly in the positive direction as compared to that in PhCN. Such a positive shift may be ascribed to the stronger solvation of NMP to C_{60}^{--} as compared to that of PhCN.³⁸ On the other hand, the second reduction occurs at about the same potential. From the reversibility of the cyclic voltamogram in Fig. 3, the singly and doubly reduced C_{60} are stable under the CV time scale in deaerated NMP.

Photoinduced O_2 ⁻⁻ generation in a C₆₀-BNAH-O₂ system in NMP

The singlet excited state of C_{60} produced initially upon irradiation is known to be efficiently converted to the triplet excited state by the fast intersystem crossing.¹³ The transient absorption spectra in the visible and near-IR region are observed by the laser flash photolysis of a deaerated NMP solution of C_{60} with 532 nm laser light as shown in Fig. 4a. The

Fig. 4 (a) Transient absorption spectra observed in the photoreduction of C_{60} (1.0×10^{-4} M) by BNAH (2.0×10^{-3} M) after laser excitation in deaerated NMP at 295 K. (b) Time course of the absorbance changes at 740 nm for the decay of ${}^{3}C_{60}^{*}$ and 1075 nm for the formation of C_{60}^{-1} in the photoreduction of C_{60} (1.0×10^{-4} M) by BNAH (2.0×10^{-3} M) after laser excitation in deaerated NMP at 295 K.

triplet-triplet absorption band at 740 nm appears immediately after nanosecond laser exposure (Fig. 4).^{30,31} The ${}^{3}C_{60}^{*}$ thus formed may undergo the energy-transfer reaction to molecular oxygen (O₂) to produce ${}^{1}O_{2}$ ¹⁴⁻¹⁹ or the electron-transfer reduction by reductants to produce $C_{60}^{*-20-31}$ As in the case of the aqueous system described above, ${}^{1}O_{2}$ could not be detected for an NMP solution of C_{60} in the presence of O₂ by near-IR luminescence emission spectroscopy. In the presence of an NADH model compound, 1-benzyl-1,4-dihydronicotinamide (BNAH), O₂⁻ was detected with the use of 5-diethoxyphosphoryl-5-methyl-1-pyrroline *N*-oxide (DEPMPO) used as an O₂^{*-}-trapping agent.⁴³ DEPMPO reacts with O₂^{*-} to form the O₂^{*-}-adduct, DEPMPO–OOH, which shows a characteristic EPR signal different from that of 'OH-adduct, DEPMPO–OH.⁴³ Fig. 5 shows the EPR spectrum of DEPMPO–OOH observed after visible-light irradiation of an NMP solution of C₆₀, BNAH, and DEPMPO in the presence of O₂ at 298 K. Thus, a charge transfer interaction between NMP and C₆₀ prohibits energy transfer from ${}^{3}C_{60}^{*}$ to O₂ but

Fig. 5 X-Band EPR spectrum of DEPMPO–OOH formed by visiblelight irradiation (30 s) of an NMP solution of C_{60} (1.4 × 10⁻⁴ M), BNAH (1.4 × 10⁻³ M), and DEPMPO (1.4 × 10⁻² M) in the presence of O₂ using a 300 W reflector lamp at 298 K.

electron transfer from BNAH to ${}^{3}C_{60}^{*}$ is not retarded by the interaction with NMP.

In the absence of O_2 , the photoinduced electron-transfer reduction of C_{60} by BNAH indeed occurs to produce C_{60}^{-} [eqn. (1)]. The characteristic near-IR band at 1075 nm⁴⁴ due to C_{60}^{-} was observed under visible-light irradiation at 532 nm of a deaerated NMP solution of C_{60} and BNAH.³¹

a solvent suggest that $O_2^{\bullet-}$ is formed *via* the electron transfer reduction of O_2 by C_{60}^{2-} which is produced in the photoreduction of C_{60} -PVP by NADH in an aqueous solution.

The triplet excited state $({}^{3}C_{60}^{*})$ is responsible for the photoinduced electron transfer from BNAH, since the decay of the transient absorption band at 740 nm due to ${}^{3}C_{60}^{*}$ appearing immediately after nanosecond laser pulse is accompanied by appearance of a new absorption band at 1075 nm due to ${}^{6}C_{60}^{*}$ as shown in Fig. 4a. The decay of the absorbance at 740 nm due to ${}^{3}C_{60}^{*}$ obeys pseudo-first-order kinetics, coinciding with the rise of the absorbance at 1075 nm due to C_{60}^{*-} (Fig. 4b). The rate constant of photoinduced electron transfer from BNAH to ${}^{3}C_{60}^{*}$ is determined as $1.3 \times 10^{9} \, \text{M}^{-1} \, \text{s}^{-1}$.

Mechanism of O₂^{•-} generation

From the results described above, the mechanism for photoinduced O₂⁻⁻ formation in NMP is proposed as shown in Scheme 1, where the redox potential for each compound is presented. Visible-light irradiation of C₆₀ gives the singlet excited state ¹C₆₀*, which is followed by the intersystem crossing (ISC) to produce the triplet excited state of ³C₆₀*.¹³ Then, the electron-transfer reduction of ³C₆₀* having a high reduction potential of $E^{0}_{red} = 1.14$ V vs. SCE by BNAH ($E^{0}_{ox} = 0.57$ V vs. SCE)⁴⁵ occurs to give a radical ion pair of C₆₀⁻⁻ and the BNA radical cation (BNAH⁺⁺).^{13,31} BNAH⁺⁺ undergoes deprotonation to give the BNA radical (BNA⁺), which is a very strong electron donor having an oxidation potential of $E^{0}_{ox} = -1.08$ V vs. SCE.^{31,45} The BNA⁺ can reduce C₆₀⁻⁻ to C₆₀⁻², since the oxidation potential of BNA⁺ is more negative than the reduction potential of C₆₀⁻⁻ ($E^{0}_{red} = -0.86$ V vs. SCE). In the absence of O₂, electron transfer from C₆₀²⁻ to C₆₀ yields two equivalents of C₆₀⁻⁻. In the presence of O₂, however, electron transfer from C₆₀²⁻ ($E^{0}_{ox} = -0.86$ V vs. SCE) to O₂ having a reduction potential at -1.04 V vs. SCE in NMP occurs to give C₆₀⁻⁻ and O₂⁻⁻.

In conclusion, the primary active oxygen species involved in the C_{60} -PVP-NADH-O₂ system has been shown to be O₂^{•-} rather than ¹O₂. The results obtained above with use of NMP as

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research Priority Area (No. 11228205) from the Ministry of Education, Science, Culture and Sports, Japan.

References

- (a) T. Da Ros and M. Prato, Chem. Commun., 1999, 6631;
 (b) A. W. Jensen, S. R. Wilson and D. I. Schuster, Bioorg. Med. Chem., 1996, 4, 767;
 (c) H. Tokuyama, S. Yamago, E. Nakamura, S. Takashi and Y. Sugiura, J. Am. Chem. Soc., 1993, 115, 7918;
 (d) E. Nakamura, H. Tokuyama, S. Yamago, T. Shiraki and Y. Sugihara, Bull. Chem. Soc. Jpn., 1996, 69, 2143;
 (e) A. S. Boutorine, H. Tokuyama, M. Takasugi, H. Isobe, E. Nakamura and C. Helene, Angew. Chem., Int. Ed. Engl., 1994, 33, 2464.
- 2 Y.-Z. An, C.-H. B. Chen, J. L. Anderson, D. S. Sigman, C. S. Foote and Y. Rubin, *Tetrahedron*, 1996, **52**, 5179.
- 3 N. Higashi, T. Inoue and M. Niwa, Chem. Commun., 1997, 1507.
- 4 (a) Y. Yamakoshi, S. Sueyoshi, K. Fukuhara, N. Miyata, T. Masumizu and M. Kohno, *J. Am. Chem. Soc.*, 1998, **120**, 12363; (b) Y. Yamakoshi, S. Yagami, S. Sueyoshi and N. Miyata, *J. Org. Chem.*, 1996, **61**, 7236.
- 5 N. Sera, H. Tokiwa and N. Miyata, Carcinogenesis, 1996, 17, 2163.
- 6 (a) J. P. Kamat, T. P. A. Devasagayam, H. Mohan, L. Y. Chiang and J. P. Mittal, *Fullerene Sci. Technol.*, 1996, 6, 663; (b) J. P. Kamat, T. P. A. Devasagayam, K. I. Proyadarsini, H. Mohan and J. P. Mittal, *Chem.-Biol. Interact.*, 1998, **111**, 145.
- 7 K. Irie, Y. Nakamura, H. Ohigashi, H. Tokuyama, S. Yamago and E. Nakamura, *Biosci. Biotechnol. Biochem.*, 1996, **60**, 1359.
- 8 N. Nakajima, C. Nishi, F.-M. Li and Y. Ikada, Fullerene Sci. Technol., 1996, 4, 1.
- 9 (a) A. Sakai, Y. Yamakoshi and N. Miyata, Fullerene Sci. Technol., 1995, 3, 377; (b) A. Sakai, Y. Yamakoshi and N. Miyata, Fullerene Sci. Technol., 1999, 7, 743.
- 10 (a) Y. Tabata, Y. Murakami and Y. Ikada, *Fullerene Sci. Technol.*, 1997, **5**, 989; (b) Y. Tabata, Y. Murakami and Y. Ikada, *Jpn. J. Cancer Res.*, 1997, **88**, 1108.

- 11 F. Käserman and C. Kempf, Antiviral Res., 1997, 34, 65.
- 12 Y. N. Yamakoshi, T. Yagami, K. Fukuhara, S. Sueyoshi and N. Miyata, J. Chem. Soc., Chem. Commun., 1994, 517.
- 13 (a) J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diedrich, M. Alvarez, S. J. Anz and R. L. Whetten, *J. Phys. Chem.*, 1991, **95**, 11; (b) J. W. Arbogast and C. S. Foote, *J. Am. Chem. Soc.*, 1991, **113**, 8886; (c) C. S. Foote, *Top. Curr. Chem.*, 1994, **169**, 347.
- 14 (a) T. Nagano, K. Arakane, A. Ryu, T. Masunaga, K. Shinmoto, S. Mashioko and M. Hirobe, *Chem. Pharm. Bull.*, 1994, **42**, 2291;
 (b) T. Hamano, K. Okuda, T. Mashino, M. Hirobe, K. Arakane, A. Ryu, S. Mashiko and T. Nagano, *Chem. Commun.*, 1997, 21.
- 15 (a) R. R. Hung and J. J. Grabowski, J. Phys. Chem, 1991, **95**, 6073; (b) R. R. Hung and J. J. Grabowski, Phys. Lett., 1992, **192**, 249.
- 16 J. L. Anderson, Y.-Z. An, Y. Rubin and C. S. Foote, J. Am. Chem. Soc., 1994, 116, 9763.
- 17 R. M. Williams and J. W. Verhoeven, Spectrochim. Acta Part A, 1994, 50, 251.
- 18 Y-.Z. An, A. L. Viado, M.-J. Arce and Y. Rubin, J. Org. Chem., 1995, 50, 8330.
- 19 R. V. Bensasson, E. Bienvenue, J. M. Janot, S. Leach, P. Seta, D. L. Schuster, S. R. Wilson and H. Zhao, *Chem. Phys. Lett.*, 1995, 254, 566.
- 20 P. J. Krusic, E. Wasserman, B. A. Parkinson, B. Malone, E. R. Holler, Jr., P. N. Keizer, J. R. Morton and K. F. Preston, J. Am. Chem. Soc., 1991, 113, 6274.
- 21 J. W. Arbogast, C. S. Foote and M. Kao, J. Am. Chem. Soc., 1992, 114, 2277.
- 22 (a) V. Brezová, A. Stasko, P. Rapta, G. Domschke, A. Bartl and L. Dunsch, J. Phys. Chem., 1995, **99**, 16234; (b) V. Brezová, A. Guegel, P. Rapta and A. Stasko, J. Phys. Chem., 1996, **100**, 13252.
- 23 M. Ruebsam, K.-P. Dinse, M. Plueschau, J. Fink, W. Krätschmer, K. Fostiropoulos and C. Taliani, J. Am. Chem. Soc., 1992, 114, 10059.
- 24 (a) K. C. Hwang and D. Mauzerall, J. Am. Chem. Soc., 1992, 114, 9705; (b) K. C. Hwang and D. Mauzerall, Nature, 1993, 361, 138.
- 25 R. M. Williams, J. M. Zwier and J. W. Verhoeven, J. Am. Chem. Soc., 1995, 117, 4093.
- 26 H. Imahori, K. Hagiwara, M. Aoki, T. Akiyama, S. Taniguchi, T. Okada, M. Shirakawa and Y. Sakata, J. Am. Chem. Soc., 1996, 118, 11771.
- 27 D. Kuciauskas, S. Kin, G. R. Seely, A. L. Moore, T. A. Moore, D. Gust, T. Drovestskaya, C. A. Reed and P. D. W. Boyd, *J. Phys. Chem.*, 1996, **100**, 15926.
- 28 D. M. Guldi and K.-D. Asmus, J. Phys. Chem., 1997, 101, 1472.
- 29 X. Zhang, A. Romeo and C. S. Foote, J. Am. Chem. Soc., 1993, 115, 11024.

- 30 (a) K. Mikami, S. Matsumoto, A. Ishida, S. Takamura, T. Suenobu and S. Fukuzumi, J. Am. Chem. Soc., 1995, 117, 11134; (b) S. Fukuzumi, T. Suenobu, S. Kawamura, A. Ishida and K. Mikami, Chem. Commun., 1997, 291.
- 31 (a) S. Fukuzumi, T. Suenobu, M. Patz, T. Hirasaka, S. Itoh, M. Fujitsuka and O. Ito, J. Am. Chem. Soc., 1998, 120, 8060; (b) S. Fukuzumi, T. Suenobu, T. Hirasaka, N. Sakurada, R. Arakawa, M. Fujitsuka and O. Ito, J. Phys. Chem. A, 1999, 103, 5935.
- 32 (a) R. S. Bodaness and P. C. Chan, J. Biol. Chem., 1977, 252, 8554; (b) R. J. Land and A. J. Swallow, Biochim. Biophys. Acta, 1971, 234, 34.
- 33 B. Czochralska, W. Kawczynski, G. Bartosz and D. Shugar, *Biochim. Biophys. Acta*, 1984, 801, 403.
- 34 M. L. Cunningham, J. S. Johnson, S. M. Giovanazzi and M. J. Peak, *Photochem. Photobiol.*, 1985, 42, 125.
- 35 S. Fukuzumi, M. Ishikawa and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1989, 1037.
- 36 D. D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, Butterworth-Heinemann, Oxford, 1988.
- 37 C. K. Mann and K. K. Barnes, *Electrochemical Reactions in Non-aqueous Systems*, Marcel Dekker, New York, 1990.
- 38 C. Ungurenasu and A. Airinei, J. Med. Chem., 2000, 43, 3186.
- 39 K. Arakane, A. Ryu, K. Takarada, T. Masunaga, K. Shinomoto, R. Kobayashi, S. Mashiko, T. Nagano and M. Hirobe, *Chem. Pharm. Bull.*, 1996, 44, 1.
- 40 (a) R. N. Bagchi, A. M. Bond, F. Scholz and R. Stösser, J. Am. Chem. Soc., 1989, 111, 8270; (b) H. Sakurai and K. Ishizu, J. Am. Chem. Soc., 1982, 104, 4960; (c) J. A. Fee and P. G. Hildebrand, FEBS Lett., 1974, 39, 79; (d) P. F. Knowles, J. F. Gibson, F. M. Pick and R. C. Bray, Biochem. J., 1969, 111, 53; (e) I. Nakanishi, K. Fukuhara, K. Ohkubo, T. Shimada, H. Kansui, M. Kurihara, S. Urano, S. Fukuzumi and N. Miyata, Chem. Lett., 2001, 1152.
- 41 R. S. Ruoff, R. Malhotra, D. S. Tse and D. C. Lorents, J. Phys. Chem., 1993, 97, 3379.
- 42 D. Dubois, G. Moninot, W. Kutner, M. T. Jones and K. M. Kadish, J. Phys. Chem., 1992, 96, 7137.
- 43 (a) C. Fréjaville, H. Karoui, B. Tuccio, F. LeMoigne, M. Culcasi, S. Pietri, R. Lauricella and P. Tordo, J. Med. Chem., 1995, 38, 258; (b) H. Karoui, N. Hogg, C. Fréjaville, P. Tordo and H. Kalyanaraman, J. Biol. Chem., 1996, 271, 6000; (c) J. Vásques-Vivar, N. Hogg, K. A. Pritchard, Jr., P. Martaskek and B. Kalanaraman, FEBS Lett., 1997, 404, 127.
- 44 D. R. Lawson, D. L. Feldheim, C. A. Foss, P. K. Dorhout, M. Elliot, C. R. Martin and B. Parkinson, J. Electrochem. Soc., 1992, 139, L68.
- 45 S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, J. Am. Chem. Soc., 1987, 109, 305.